AD=A113 281 SEORSIA INST OF TECH ATLANTA SCHOOL 'OF INFORMATION A—ETC F/6 1271
A SIMPLE AND EFFICIENT BYZANTINE GENERALS ALGORITHM.(U)
FEB 82 N A LYNCH» M J FISCHERs R FOWLER N00019-00~9-0221
UNCLASSIFIED 61T-1C5-82/02 ARO-16451,13-EL

END
fioeky
nm

n
o

[F)
L il m2o

——— E m w;
£ i [J20
£ —

fl ==
HL2s Jlis mie

=

el £

I’r

MICROCOPY RESOLUTION‘ TEST CHART

-

et U ¢ St SRR i ol B A S i i

s,

GIT-1C5-82/(

A SINPLE AND EFFICIENT
BYZANTINE GENERALS ALGORITHM +

Nancy A. Lynch#*
Michael J. Fischer**
Robert Fowlerkk*

Februs~y, 1982

*Computer Science Department
Massachusetts Institute of Technology

Cambridge, MA 02139 |

Pi,;,_!: f‘ : e oA

*%Department of Computer Science ELEC &
Yale University Lo
New Haven, CT 06520 APR 121982 .

***Computer Science Department
University of Washington . E
Seattle, WA 98195 - .

+ This work was supported in part by the Office of Naval Regearch under
Contract N00014-80-C~0221 through a subcontract from the University of
Washington, by the Office of Army Research under Contract DAAG29-79-C-

0155, and by the National Science Foundation under Grants MCS79-24370
and MCS81-16678.

<y P

e e, il TS Sy

A SIMPLE AND EFFICIENT BYZANTINE GENERALS ALGORITHM

Nancy A. Lynch
Massachusetts Institute of Technology'
Cambridge, Massachusetts

-Michael J. Fischer
Yale Unijversity
New Haven, Connecticut/ °™'°¢
copy
and “P:CTED
Robert Fowler
University of Washington

Seattle, Washington

February, 1962

Accession Fop]

NTIS CcRAgT

DTIC Tag g
Unannounceq]
Justificat*}.f)n
—
—
By |
- R
Dist}jlbuticn/

- * 2 p NP
Avallabllltv Codes

Avail and/op
Dist Special

|

DTIC

APR 1 21982 N\
-
E

*This work was supported in part by the Office of Naval Research under Contract NOOO14-80-C-
0221 through a subcontract from the University of Washington, by the Office of Army Research under
Contract DAAG29-79-C-0166, and by the National Science Foundation under Grants MCS-79-24370

and MCS81-16678.

10n Isave from Georgia inetitute of Technology

o LIS AT ONSDRIB T st Clmn I i ol o

LYNCHSAMPLE.MSS; 23 February 1982 at 15:03 Page 1

ABSTRACT

; The Byzantine Generals problem involves a system of N processes, t of which may be unreliable.

- The problem is for the reliable processes to agree on a binary value sent by a "general”, which may
itself be one of the N processes. If the general sends the same value to each process, then all reliable
processes must agree on that value, but in any case, they must agree on the same value. We give an ;’
explicit solution for N = 3t+ 1 processes, using 2t + 4 rounds and O(t3 log t) message bits, where t
bounds the number of faulty processes. This solution is easily extended to the general case of N >
3t+1togivea solution using 2t + 5 rounds and O(tN + T"’log t) message bits.

1. introduction

The Byzantine Generals problem (or, the problem of "assuring interactive consistency") is
defined in [PSL]. It is assumed that there are N isolated processes, of which at most t are fauity. The
processes can communicate by means of two-party messages, using a medium which is reliable and
of negligible delay. The sender of a message is always iden(ifiable by the receiver. The problem is for
the nonfaulty processes to agree on a binary value sent by a "general”, which may itself be one of the
N processes. If the general sends the same value to each process, then all reliable processes must
agree on that value. If the general sends different values to different processes (i.e. the general is

"fauity”), then all reliable processes must agree on some value.

Algorithms for solving this problem are surprisingly difficult to devise. The difficulty is that faulty
. processes can provide conflicting information to different parts of the system. This fact causes
simple solutions based on majority voting to fail, since a faulty process coukd cause two nonfaulty
- L processes to decide that the majority voted in opposite ways.

An efficient solution to the Byzantine Generals problem would be a valuable tool for the
construction of reliable computer systems. Such systems should be able to handle malfunctioning
components which provide conflicting information.

The algorithms in the earliest papers on this problem [PSL, LSP] seem to be quite expensive, both
in terms of number of message bits (exponential in t, the number of faults) and time (t + 1 rounds of
synchronous message exchange). This is true even in the presence of certain authentication
capabilities. It is shown in [FL], in the simplest case of non-authenticated communication, that t+ 1
rounds are optimal, for worst-case algorithm behavior. This lower bound resuit is extended in [DS,
DLM] to the case in which arbitrary authentication capabilities are allowed. Thus, there is no way to
improve on the number of rounds in the earlier algorithms.

R e ool Bain. . S SR TS S VS TN S

LYNCHSAMPLE.MSS; 23 February 1982 at 15:03 Page 2

The more serious drawback of the earlier algorithms is the large amount of message traffic which
is sent among the processes. There is essentially no structure to the information which is exchanged
in those algorithms; processes repeatedly broadcast everything they know, and then apply certain
decision functions to the final results. }t is obviously desirable to discover ways of summarizing the
information, only sending what is relevant.

The first solution which requires an amount of communication polynomial in the nbmber of fauits
appears in [DS]. The authors summarize the information in clever ways, and obtain a solution which
uses 4t + 4 rounds and O(n‘ log n) message bits. (Their solution can easily be modified, using the
same frick we use in Section 3., to use 4t + 5 rounds and O(tN + t* log 1) message bits.)

in the present paper, we use many of the ideas of [DS], plus several new ones, to devise another
solution with polynomial communication. Our solution uses only 2t + 5 rounds, and O(IN + (o log t)
message bits, thus giving important savings both in time and amount of communication. In addition,
we think that the new algorithm is considerably simpler than the algorithm of [DS].

We do not know if our algorithm is optimal; in particular, we have so far been unsuccessful at
removing the factor of 2 which separates the number of rounds used by our algorithm from the known

minimum.

2. The Model
Let [N] denote {1,....N}.

We model a Byzantine Generals algorithm as a synchronous system of automata. Such a system
* S is described by the following:

N -- the number of processes;

Q = (Q,.....Q,) -- the state sets of each of the N processes;

90 = (q0,,....q0)) -- initial states for each process indicating the general’s value is "0",
91 = (q1,,...q1,) -- initial states for each process indicating the general’s vaiue is 1",
F = (F,,...Fy), where each F, C Q, -- accepting states for each process,

M = (M,,....M,) -- the sets of possible messages which each process might send,
by Q, — M, Ii € [N] -- the message generation functions,

TPHTCRN AU

LYNCHSAMPLE .MSS; 23 February 1982 at 15:03

(where p. . describes messages sent from process i to process j)
i

§': Q' XM, X..X M — Qi'i € [N]--the state transition functions.

Let T C [N], and let v € {0,1,?}. (T is the set of reliable processes or "truthtellers”, and v is the
general's value. A value of '?' indicates that the general himself is unreliable.) A sequence of state
vectors q(0), q(1), ..., q(R) is an R-round (T,v)-computation if there exist messages m, j(r) € M, ij €
[N], 0 < r<R, such that

1. INITIALIZATION:
Ifv = Othen q(0) = qO.
Ifv = 1then q(0) = q1.
lfv = ?then q,(0) € {q0, q1,},for alli € [N].

2. CORRECT MESSAGES:
Foreachr,0 <r<{Randeachi€T,j€ [N], m, J(r) =B, J(qi(r)).

3. CORRECT TRANSITIONS:
Foreachr,0<r<R,andeachj€T, qi(r+ 1) = {i(q‘(r), m, J(r), wer My _‘(r)).

We say that S so/ves the Byzantine Generals problem in R rounds if for every T C [N] with |T] > N-t,
every v € {0,1,?}, and every R-round (T,v)-computation q(0),....q(R), the final state vector q(R)
satisfies the following:

- 1. AGREEMENT: Ifi,j € T, then q,(R) € F, iff ql(R) € Fl'

2.VALIDITY: Iifv# 7, thenforalli€ T, q(R) EF;iffv = 1.

Intuitively, a step or round of the computation takes place in two phases. First, every process
sends a message to every other. Secondly, each process changes state based on its old state and the
messages it receives. Unrelfiable processes can send arbitrary messages, so there are in general
many possible computations, all of which must satisfy the agreement and validity conditions above.

We assume about the general only that it is a possibly-unreliable data source that communicates a
(binary) value to each of the N processes in the system before the algorithm begins. Thus, the
general might be one of the N processes, or it might be a sensor or |70 device that all processes can
read. In our formalization, the general’s value is encoded by each process’s start state. In other
treatments of this problem, the general is identified with one of the N processes which carry out the
algorithm, and each other process starts in the same state regardiess of the general's value. Our
version is slightly stronger, for a solution 10 our problem solves the other version by simply adding an

LS B A e R S o Al T O Ve e i AR

LYNCHSAMPLE.MSS; 23 February 1982 at 15:03 Page 4

initial round in which the general sends his value to each other process. The converse, however, is
He not in general true, for an algorithm might make use of the fact that at most t-1 unreliable processes
remain when the general has been determined to be unreliable and is a known one of the processes.

3. A Simpilification

38 We give an explicit construction for the case N = 3t+ 1. To handle the case of N > 3t + 1, just run
‘3 ' the given algorithm on any subset A with JA] = 3t+ 1. After the last round, a designated subset B8 C A,
4 ‘_ IB] = 2t + 1, broadcasts its answers to all N processes. Since all the (t + 1 or more) reliable processes
i ‘ in B agree, a simple majority vote gives all the other reliable processes consistent answers. This takes
only one additional round and O(tN) additional message bits above and beyond the basic aigorithm.

FETW O W

3 4. Basic Solution
Now assume N = 3t+ 1. LetLOW = t+ 1 and HIGH = 2t + 1. We describe a system S.

The only pieces of infoimation sent in messages are process indices and one special value
Formally, et | (the set of message items) = {'*'} U [N]. Messages are sets of message items; thus,
eachM, = 2. '

A process state consists of a number (representing the current round) together with a set of "data
entities”. A data entity is either the single value 0 or 1 (representing a value of O or 1 received from
the general) or else a pair consisting of a message item and a process from which that message is
received. Each process remembers the initial value and all the messages it has ever received from
any process. Formally, a daia entily is an element of D= {0,1} U (I X [N]). A process state q is a pair
(data(q), round(q)), where data(q) C D and round(q) € N. Thatis, each Q, = 2P X N. The initial states
are q0, = ({0},0) and q1, = ({1},0). The transition function simply records all new messages
28 3 received, together with their senders, and increments the round number. That s,
B Z(@m,...my) = (data(q) U {(x) € D |x € m}, round(q) + 1)

4 Thus, the data component of the process state behaves "monotonically”-new data entities can get
added during the course of an execution, but nothing is ever deleted.

A;":w;mw‘;f—y WY e

We require some notation for characterizing process states. Let q be any process state and
Jet x € |. We define

W@ = { €[N]1(x.)) € data(q)},
the witnesges to x, and we letw_(q) = Iw.(q)l. We define
Cla) = {k € N) | w,(a) > HIGH),

S L1 e MO X OB AT T < NPT el S Nt Ly X e e

e e o e RIS AT

: 8 : ,
. !
LYNCHSAMPLE.MSS; 23 February 1982 at 15:03 Page 5 i 4
.
, the confirmed processes, and we let c(q) = |C(q)|. Process iinitiates in q if either :
'j ' 1. 1 € data(q),
4l 12. c(q) > LOW + Fround(a)/271-1, or
o [T
3
A 13.i € W,(q).
g Process i commits in q if c(q) > HIGH. ‘
‘ k , The heart of the algorithm is the message generation function. The function is defined to be ;
‘ {: monotonic in the data component of the state - more data entities can only cause more messages to :
' be sent. Since the data component of the state behaves monotonically, this definition implies that any

message, once sent, will be sent on all subsequent rounds. This is an obvious inefficiency which is
removed by a trivial optimization. (See Section 6.) It is useful to describe the algorithm in this way,

e
a -t

however, since the monotonic algorithm is easier to reason about than its optimized version.

B N SN P

We define p, J(q) to be the smallest set satisfying the following rules:

M1. (Initiation) If i initiates in q, then '*’ € B, .i«')' ?

M2. (Direct witness) W, () C p, (Q);

M3. (Indirect witness) If w,(q) > LOW, then k € g, ;@) foreachk € N].

Finally, F, = {q € Q}i commitsin q).
Theorem 1: Let R = 2t + 4. Then S solves the Byzantine Generals problem in R
. rounds.

e s e e e e A e

B P

~ The correctness of this algorithm is somewhat subtle and is proved in thé next section. However, E
the following intuition should help the reader's understanding.

i : During the course of execution, processes initiate from time to time. This means that they know
that the general has sent a "1" to some reliable process and that they are proposing to accept. A
process announces initiation by sending a’** to the other processes.

P g

A process receiving a '*’ becomes a witness to the sending process’s initiation. A process can
become an "indirect” witness by hearing about it from at least LOW other processes, since then at
least one of them must be reliable. In either case, it broadcasts that fact to all processes, including
itself. (The sending process will thus record itseif as a witness at the same time as all other processes
do.)

P14

Sah

RN e -q»wwm

vt oot SRS HESP N

e e MBI R DE — E A T VY A R G T

W

LYNCHSAMPLE.MSS; 23 February 1982 at 15:03 Page 6

A process receiving a message item k € [N] from process j records the fact that j claims to be a
witness k. When at least HIGH distinct j's claim to be witnesses to k, then k is confirmed. The
confirming process then knows one of two things must be true: Either k is reliable and indeed has
initiated, or k is unreliable but nevertheless has told at least LOW reliable processes that it had
initiated.

A process initiates on the first round if it receives a “1" from the general. Thereatfter, it can only
initiate it it has confirmed sufficiently many initiations by other processes. This threshold number for
initiation starts out at LOW and increases by one every two rounds until it reaches HIGH. By that time,
either at least LOW reliable processes will have initiated or it is no longer possible for a reliable
process to initiate. In the former case, after three more rounds every reliable process will commit. In
the latter case, no reliable process can commit. The delicate part of the algorithm concerns these last
two facts; namely, initiating and committing are easy enough so that as soon as LOW reliable
processes initiate, then an avalanche begins which results in all reliable processes initiating and
committing a small number of rounds later. On the other hand, committing is hard enough so that no
process commits in the last three rounds except as a resuit of an avalanche started earlier.

-

5. Proof of Correctness

The following lemmas prove Theorem 1 and establish the correctness of the algorithm. Al refer to
a fixed (T,v)-computation q{0), ..., q(R), R = 2t + 4, with associated messages m, J(r). ij€[NJ,o<Lr<
R.

Lemma 2 formalizes the monotonicity properties of process states.

Lemma 2: Let0 < r < r <R, i€ T.Then W, (q(r) C W, (q,(r) for all x € |, and
C(qi(r')) Cc C(q,(r)). Moreover, if i initiates (commits) in qi(r'). then i initiates (commits) in
o,(0).

Proof: if r' = r, then there is nothing to prove. So assume r’ < r. Monotonicity of W and
C are obvious; hence, if i commits in q,(r'), then it commits in q,(r). Suppose i initiates in
q(r'). Then'*' € mu(r'), S0i € W.(q,(r" + 1)), and by monotonicity of W, i € W.(q(r)). Thus,

i initiates in q,(r) by Rule 13.
a

The next lemma says that whenever a truthteller initiates, it is confirmed at all truthteliers two
rounds later.
Lemma 3: Leti,j € T. lf i initiates in q(,0<r<R-2, theni € C(ql(r+2)).
Proof: Letk €T. Theni € W.(q,(r + 1)) by Rule M1. Similarly, k € 'Nl(ql(u 2)) by Rule

&

i Mer e gt i S s e s al ke B T St v . e N 3

”F‘ e S R . . e e e e

LYNCHSAMPLE .MSS; 23 February 1982 at 15:03 Page7

M2. Hence, wi(qi(r +2)) 2 T. The lemma follows since [T| > HIGH.

0O i
A

' Next, we show that whenever all truthtellers initiate, they all commit two rounds later. :
4 Lemma 4: Let0 <r <R-2. ifalli € Tinitiate in q;(r), then all i € T commitin qr+2). |
I Proof: By Lemma 3, € Cla,(r+2)) for all j € T; hence, clq;(r +2)) 2 HIGH.

al)

!

" O 3

The next lemma describes some information that the views of different truthtellers at the same

round must have in common,

¥,
I Lemma 5: Letijk € T,x €1 Thenk EW (q(r))iffk € W, (@)
Proof: Follows from an easy induction on r using the fact that reliable processes
. always broadcast their messages to every process.
£ : 4 a
3 :
: , Next, we show the important fact that any process which gets confirmed at one truthteller, will be

confirmed at all truthtellers one round later.
Lemma6: Let0<r <R-1,j,kET. Ki € C(q,(n) then i € C(qj(r+ 1)).
Proof: Since i € C(q,(r)), there is a set A C T N W/(q, (1) with |]A] = LOW. Let) €
T.Thenby Lemma 5,AC W'(qi.(r)). Thus,i € me; (r), by Rule M3. Hencs, j'€ wi(qi(r +1)).

4 Thus, i € C(a,(r + 1)).
a
’ Lemma 7: Let0 < r<R,i,j € T. Ifi commits in q;(r).then j commiits in q‘(n 1).
Proof: by Lemma 8.
a

The next lemma says that if there are sufficiently many witnesses for a truthteller, then that
truthteller has actually initiated.
Lemma 8: Letij€T. If w|(q,(r)) 2 LOW, then r > 2 and i initiates in q,(r-2).
Proof: We proceed by induction on r. Suppose the lemma is true for all r'<r, for r > 0,

'__:j;- mt\.&?ﬁ _1}'"‘?"_"" ST

s
AL

: and suppose wi(qi(r)) 2 LOW. Then thereis somek € TN Wl(ql(r)). Butthenr 2> 1andi €
M (r-1), and this is either because of M2 or M3. It it is because of M2, then | €w.(qt(r-1)).
3 so thatr > 2and **’ € m,,(r-2) and hence i initiates in q(r-2). If it is because of M3, then

wi(a,(r-1)) = LOW. Then by induction, r-1 > 2 and i initiates in q(r-3). Application of
Lemma 2 shows that i initiates in q(r-2).

A 4‘".-w—x.&:ﬁ-.:«ﬁ;wam.&a,n‘é;w;ﬁy,g.,;ag;. A R e et NS S 0 ket s q.«wmswwvz S

LYNCHSAMPLE.MSS; 23 February 1982 at 15:03

The following lemma follows easily from Lemma 8,
Lemma 9: Leti € T, and suppose i commits in q,(r). Thenr > 2and thereisaset AC
T with JA| = LOW such that every j € A initiates in qi(r-2).
Proof: c(q,(r)) 2 HIGH, so thereisaset AC TN Clay(r)) with IAl = LOW. Eachj€ A
has wi(qi(r)) 2 HIGH; hence, by Lemma 8, r > 2 and j initiates in qi(r-2).
a

The following key lemma says that whenever LOW truthtellers initiate, then all truthteliers commit
four rounds later. Thisis the "avalanche" described in the intuitive discussion of the algorithm.
Lemma 10: Let0 <r <R-4. Ifthereisaset AC T, |A] = LOW, such thatalli € A
initiate in q,(r), then ail j € T commit in qi(r +4).
Proof: Let r' be the least number such that all i € A initiate in qi(r'). By Lemma 3, AC
C(qi(r' +2)) for all j € T. We now argue that j initiates in qi(r' +2)). It will then follow by
Lemma 4 that j commits in qi(r' +4), and hence also in qj(r +4) by Lemma 2,

Hr =0, then c(qi(r' +2)) > JA] = LOW + I(r'+2)/27 - 1. Thus, j initiates in qi(r' +2) by
Rule 12. If r' > 0, then there is some k € A such that k initiates in q,(r') and k does not
initiate in q,(r'-1). Then k initiates in qk(r') using Rule 12, so c(q,(r)=> LOW + I'e'/721-1. If
k€ C(qk(r’)), then Lemma 8 implies that k initiates in qk(r'-2), a contradiction (using Lemma
2). Thus, k ¢ C(q,(r')). By Lemmas 2 and 6, C(qi(r’ +2)) D C(qk(r‘)) forallj € T. By Lemma
3 k€ C(qi(r'+ 2)). Hence, c(qi(r’+2)) 2LOW + /27 = LOW + I(r'+2)721- 1. Thus, j
initiates in qi(r‘ + 2) by Rule 12 as desired.

We are now ready to prove the properties required for Theorem 1 - agreement and validity.
Lemma 11: Ifanyi € T commits in g,(R), then all j € T commit in qi(R).
Proof: Assume i € T commits in q(R). By Lemma 9, there is a set A C T with |A] =
LOW such that every j € A initiates in q‘(R-Z).

We consider two cases. First, assume all j € A initiate in qj(R-4). In this case, Lemma
10 implies the result. Second, assume that some j € A initiates in qi(r) but not in qi(r-1). for
somer € {R-3,R-2}. Then j initiates by 12. Then c(qj(r)) 2LOW + /21112 1LOW + t =
HIGH, 80 j commiits in qi(')' Then Lemmas 7 and 2 imply the result.

: 2,
» IR S,

R SN A AR R VR o ot it v bin SR U i is SOl O il

R SR

LYNCHSAMPLE.MSS,; 23 February 1982 at 15:03 Page 9

Lemma 12: Leti€T.
(a) lfv = 0, then q(R) ¢ F,
(b) Itv = 1, then q,(R) € F.

Proof: (a) v = 0. Suppose i commits in qi(R). Then by Lemma 9, there is an element j
€ T that initiates in qi(R-z). Consider the least r for which some j € T initiates in qi(r).
Clearly r > 0 by the initial conditions. Hence, j initiates by Rule {2, so c(qi(r)) 2> LOW. Thus,
thereisak € TN C(qi(r)),) wk(qj(r))z HIGH. But then it follows from Lemma NANCY7
that k initiates in qk(r-2), contradicting the choice of r. We conclude that qi(R) ¢ Fi.

(b) v = 1. Eachi € T initiates in q,(0) by Rule 1. ‘By Lemma 4, each i € T commits in
qi(2). Thus, q; (R) € FI.

6. Complexity Analysis

Since il = N+1, each message item can be encoded by O(log N) bits, and a message m
consisting of k message items can be encoded in length Ok log N). The algorithm of the previous
section sends N2 messages on each round, and each message potentially contains N + 1 message
items; hence an upper bound on the number of message bits sent is O(N2 R (N+1) log N) =
O(t4 log t). (The log factor can be eliminated by a bitwise encoding of the entire message.)

A minor modification of the algorithm however results in a saving of the factor of R. The algorithm
is monotone in the sense that data entities are never deleted from the data part of the state, and
incoming messages have no effect except to be added into the state. Thus, the algorithm would
operate exactly the same if each message item were sent from i to j only once. The only change to the
algorithm would be that each process would have to remember in its state which messages had
previously been sent out and to whom, and to omit éending'a previously-sent message. The result is
that each process i would send a maximum of |l] message items to each process j during the entire
course of the algorithm. The total number of message bits then would be
O(N2 (N +1) logN) = O(t log t).

. Combining the ideas of the previous paragraph with those of Section 3, we obtain:

Theorem 13: There is an algorithm which solves the Byzantine Generals problem for t
unreliable processes out of a total of N > 3t+1, uses 2t+5 rounds of information
exchange, and sends O(t3 log t + tN) message bits.

Rt s]

MRS

o s A T AN 23 V2 R 3y el SN Pl i R

LYNCHSAMPLE .MSS; 23 February 1982 at 15:03 Page 10

Acknowledgements:
The authors would like to thank Paris Kanellakis for help in understanding the key ideas in [DS],
and Eugene Stark for help in improving the presentation.
References:
[DLM] DeMillo, R., Lynch, N. and Merritt, M. Cryptographic Protocols. SIGACT 1982

[DS] Dolev, D. and Strong, S. An Efficient Byzantine Agreement Without Authentication.
SIGACT 1982

[FL] Fischer, M, and Lynch, N. A Lower Bound on the Time to Reach intaractive Consistency.
To appear in IPL.

[LSP] Lamport, L., Shostak, R. and Pease, M. The Byzantine Generals Problem, Manuscript.

[PSL] Pease, M., Shostak, R. and Lamport, L. Reaching Agreement in the Presenceof Faults,
ACM, Vol

2, April, 1 -

o'W, o A,

DIV

A r—— .——...‘-‘.. " V.- * N

i AR R

o, Ay e B S s

unclassified
SECURITY CLASSIPICATION OF THIS PAGE (When Date Enteved)
REPORT DOCUMENTATION PAGE BRFORE COMPLETING FORM
1. REFGRY NUNBER . GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER |
GIT-ICS-82/02
4. TITLE (and Subiitle) 8. TYPR OF REPORYT & PERIOD COVERED
Interim
A Simple and Efficient Byzantine Generals Technical Report
Algorithm 4. PERFORMING ORG. REPORY NUMBER
e AR e e ——
Nancy A. Lynch, MIT; Michael J. Fischer, ~N00014-80~C~0221

Yale University; Robert Fowler, University of 0~DAAG29-79-C~0155

Washington _ SF-MCS79-24370, MCS81-16678

. PERFORMING ONGANIZATION NAME AND ADDRESS mmm—
School of Information and Computer Science

Georgia Institute of Technology

Atlanta, Georgia 30332

11. CONTROLLING OFFICE NAME AND ADDRESS 12.” REPORT DATE
rmy Research Office Office of Naval Research Februag-, 1982
0 Box 12211 800 N. Quincy Street . ['3 wumsER of PacES

+
18. SECURITY CLASS. (of this repert)

unclassified

Tia. EE&FFICA‘HW DOWNGRADING
LE

176, OISTRIBUTION STATEMENT (of this Repers)

unlimited

17. DISTRISUTION STATEMENT (of the abetracs entered in Bieck 20, If ditferent fram Report)

unlimited

5 SUPFLENENTARY NOTES
‘THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT

ARE THOSE OF THE AUTHOR(S) AND SHOULD NCT BE CONSTRUED AS

AN OFFICIAL DEPARTMENT OF THZ ARMY POSITION, POLICY, OR DE-

CISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION,
[19. KEY WORDS (Continve on sids 11 nesesoary and 1Gemtily by Bicek mumber)
Byzantine Generals
interactive consistency
consensus

fault tolerance

st srocesstog

—= The Byzantine Generals problem involves a system of N processes, t of
which may be unreliable. }‘ problem is for the reliable processes to agree
a binary value sent by a“general’, which may itself be one of the N processes.
If the general sends the same value to each process, then all reliable pro-

cesses must agree on that value, but in any case, they must agree on the same
value. We give an explicit solution for N=3t+l processes, using 2t+4 rounds

-

and 0(&«‘103 t) message bits, whare t bounds the number of faulty process

DD , 577 1473 eoimon or 1 nov 68 1s OBsOLE TR
W olor-ore- et ST TR TR B R ST T B et

+'(« btl

g
P TP ST RPN S oA M-~ B o512 3 1 71 A5

W b e i b it

Aian Whns dEare oo

Badagaans e
3N

.
e v, - e et

e aan .1

Tarmeaa -

it R A SRl M SO RS T i a1

—unclassified
L6 LURTY CLASSIFICATION OF THIS PAGE(When Date Entered)

11. National Science Foundation

Washington, D.C.
D>eor =

20.: This solution is easily extended to the general case of %Btﬂ to

glve a solution using 2t+5 rounds and O(tm(r}log t) megsage bits. <
T - ta bed

unclassified

SECURITY CLASHPICATION OF THIS PAGE(When Dete Bntored)

s ouretnm O oy s 34

